Vẽ đồ thị trong Python với thư viện Matplotlib

Lập Trình
Vẽ đồ thị trong Python với thư viện Matplotlib
Bài viết được sự cho phép của tác giả Kien Dang Chung Trước khi bắt đầu với câu hỏi Tại sao Matplotlib là một thư viện phổ biến trong Python? chúng ta đến với vài câu nói đúc kết của người xưa mà còn nguyên giá trị đến nay. A picture is worth a thousand words – Một bức tranh hơn ngàn lời nói Ngạn ngữ Anh Như chúng ta đã biết Python được sử dụng nhiều nhất trong lĩnh vực phân tích dữ liệu, mà trong khoa học dữ liệu, việc trực quan hóa thông qua các đồ thị, biểu đồ giúp cho chúng ta hiểu được các mối quan hệ trong dữ liệu dễ dàng hơn rất nhiều. Matplotlib là một thư viện sử dụng để vẽ các đồ thị trong Python, chính vì vậy nó là thư viện cực phổ biến của Python. Bạn thử tưởng tượng một file dữ liệu khoảng 20MB, khi vẽ ra đồ thị từ dữ liệu này bạn sướng như phát điên vì có thể hiểu được ngay 20MB đó nói lên cái gì? Ngày nay, khi Big data đang trở thành thực tế, hàng ngày có quá nhiều dữ liệu, việc trực quan hóa dữ liệu càng trở nên cấp thiết và càng thúc đẩy những thư viện như Matplotlib phát triển hơn. Mục đích của bài hướng dẫn này giúp bạn hiểu được cách vẽ các đồ thị, biểu đồ với thư viện matplotlib và từ đó bạn có thể sử dụng thành thạo nó cho trực quan hóa dữ liệu. Tìm việc làm python lương cao các vị trí cho bạn PyLab – Matplotib Cơ Bản Matplotlib là một thư viện vẽ đồ thị trong Python, cho phép bạn tạo ra các biểu đồ và hình ảnh chất lượng...

Bài viết được sự cho phép của tác giả Kien Dang Chung

Trước khi bắt đầu với câu hỏi Tại sao Matplotlib là một thư viện phổ biến trong Python? chúng ta đến với vài câu nói đúc kết của người xưa mà còn nguyên giá trị đến nay.

A picture is worth a thousand words – Một bức tranh hơn ngàn lời nói

Ngạn ngữ Anh

Như chúng ta đã biết Python được sử dụng nhiều nhất trong lĩnh vực phân tích dữ liệu, mà trong khoa học dữ liệu, việc trực quan hóa thông qua các đồ thị, biểu đồ giúp cho chúng ta hiểu được các mối quan hệ trong dữ liệu dễ dàng hơn rất nhiều. Matplotlib là một thư viện sử dụng để vẽ các đồ thị trong Python, chính vì vậy nó là thư viện cực phổ biến của Python. Bạn thử tưởng tượng một file dữ liệu khoảng 20MB, khi vẽ ra đồ thị từ dữ liệu này bạn sướng như phát điên vì có thể hiểu được ngay 20MB đó nói lên cái gì? Ngày nay, khi Big data đang trở thành thực tế, hàng ngày có quá nhiều dữ liệu, việc trực quan hóa dữ liệu càng trở nên cấp thiết và càng thúc đẩy những thư viện như Matplotlib phát triển hơn.

Mục đích của bài hướng dẫn này giúp bạn hiểu được cách vẽ các đồ thị, biểu đồ với thư viện matplotlib và từ đó bạn có thể sử dụng thành thạo nó cho trực quan hóa dữ liệu.

Tìm việc làm python lương cao các vị trí cho bạn

PyLab – Matplotib Cơ Bản

Matplotlib là một thư viện vẽ đồ thị trong Python, cho phép bạn tạo ra các biểu đồ và hình ảnh chất lượng cao. PyLab là một mô-đun trong Matplotlib, cung cấp một giao diện giống như Matlab để làm việc với các biểu đồ một cách dễ dàng.

John D. Hunter, một nhà thần kinh học bắt đầu phát triển matplotlib năm 2003 để mô phỏng các tập lệnh MATLAB, ông qua đời năm 2012 ở tuổi 44. Matplotlib giờ được phát triển và duy trì bởi cộng đồng các nhà phát triển khác.

Trong MATLAB, chúng ta không cần import gì mà có thể sử dụng các hàm có sẵn ngay lập tức khác với Python phải thực hiện import các thư viện cần thiết. Matplotlib có nguồn gốc từ MATLAB do đó module Pylab trong thư viện Matplotlib được xây dựng để có được cách thức sử dụng hàm như MATLAB. Nó đưa một số hàm và lớp từ Numpy và Matplotlib vào namespace giúp cho người dùng MATLAB có thể chuyển đổi sang Python sử dụng dễ dàng.

Khi bạn thực hiện lệnh import sau vào Python:

from pylab import *

Bạn có thể sử dụng ược ngay các hàm như plot(), array() như trong MATLAB. Vấn đề là với câu lệnh import này không ổn, nó bị chồng chéo các module sử dụng trong chương trình Python. Pylab do lịch sử để lại và nó không được khuyến cáo sử dụng, nó sử dụng các tên vô tội vạ với các chức năng ẩn giấu bên trong và rất khó để kiểm tra lỗi, do đó nên sử dụng Matplotlib.

Trong Pylab có rất nhiều các import tiền ẩn khả năng xung đột được che đậy kín. Matplotlib đã từ bỏ module này và khuyến cáo không nên sử dụng Pylab, mang mọi thứ trở nên rõ ràng hơn là để ngầm định. Không có pylab, chúng ta thường sử dụng một câu lệnh thay thế một cách chính tắc:

import matplotlib.pyplot as plt

Phân cấp đối tượng trong Matplotlib

Nếu bạn đã đọc tài liệu của Matplotlib, dòng code dưới đây là một phân cấp với các đối tượng Python lồng vào nhau. Phân cấp ở đây nghĩa là kiểu cấu trúc cây các đối tượng Matplotlib trả về từ plot(). Đối tượng Figure là nơi chứa đồ họa Matplotlib, nó có thể chứa các đối tượng Axes. Dưới Axes là hệ thống phân cấp các đối tượng nhỏ hơn như các đường thẳng, các textbox… Hầu hết các phần tử của đồ thị đều có thể tương tác như đối tượng trong Python.

plt.plot([1, 2, 3])

Ví dụ:

>>> fig, _ = plt.subplots()
>>> type(fig)
<class 'matplotlib.figure.Figure'>

Trong đoạn code trên chúng ta tạo ra hai biến với plt.subplots(), biến đầu tiên là fig chứa Figure, biến thứ hai _ chứa những thứ khác. Đây là cấu trúc Tuple trong Python do plt.subplots() cũng trả về kiểu Tuple. Do cấu trúc phân cấp hình cây, chúng ta muốn truy xuất đến phần tử đánh dấu chẳng hạn:

>>> one_tick = fig.axes[0].yaxis.get_major_ticks()[0]
>>> type(one_tick)
<class 'matplotlib.axis.YTick'>

Biến fig là instance của lớp Figure chứa bên trong nhiều các đối tượng Axes. Mỗi Axes có một yaxis và xaxis và chúng lại chứa một tập các major_sticks và chúng ta lấy cái đầu tiên.

Một ví dụ sau đến từ Matplotlib cho chúng ta hiểu hơn về phân cấp đối tượng trong Matplotlib.

Vẽ đồ thị trong Python với thư viện MatplotlibVẽ đồ thị trong Python với thư viện Matplotlib

Hình ảnh trên được sinh ra từ đoạn code sau đây, bạn có thể tham khảo tại Matplotlib.

Vẽ đồ thị với plot()

import matplotlib.pyplot as plt
%matplotlib inline

plt.plot([1,2,3,4,10])
plt.show()

Khi sử dụng module pylot trong thư viện matplotlib chúng ta sẽ import vào với tên ngắn gọn là plt. %matplotlib inline là câu lệnh của Jupyter Notebook để vẽ được các đồ thị bên trong cell của Jupyter Notebook.

Để vẽ một dạng đồ thị, chúng ta cần xem đối tượng plt có những phương thức nào, bạn có thể sử dụng:

dir(plt)

Câu lệnh plt.plot() sẽ vẽ một đồ thị bằng cách nối các điểm bằng đường thẳng (matplotlib.lines.Line2D). Trong ví dụ này, chúng ta đưa vào một List các số và Matplotlib sẽ vẽ ra đồ thị bằng cách nối các điểm. Bởi vì plt.plot() trả về một đối tượng, do vậy khi muốn hiển thị đồ thị, chúng ta cần gọi plt.show().

Phương thức plot() có 3 tham số:

plot(x, y, format)
  • Tham số x là danh sách các tọa độ trục x
  • Tham số y là danh sách các tọa độ trục y
  • format định dạng đồ thị

Trong ví dụ đầu, khi chúng ta đưa vào một List thì mặc định đó là danh sách tọa độ trục y và định dạng mặc định là vẽ đường thẳng giữa các điểm. Ví dụ trên tương đương với:

plt.plot([1,2,3,4,10])

Kết quả được đường sau khi sử dụng plt.show():

code python vẽ hìnhcode python vẽ hình

Chú ý, trong bài viết này tôi sẽ sử dụng Jupyter Notebook để demo các ví dụ. Nếu bạn chưa biết cài đặt, sử dụng Jupyter Notebook có thể tham khảo:

Quay lại với phần định dạng đồ thị trong tham số thứ 3 của phương thức plot(). Định dạng này ở dạng viết tắt, nó là tổ hợp của ba thành phần {color}{marker}{line}. Ví dụ “go-” sẽ cho định dạng điểm có màu xanh và nối hai điểm là đường thẳng. Chúng ta thử thực hiện nó xem sao:

Chúng ta có một số định dạng khác như sau:

  • ‘r*–‘ các điểm hình ngôi sao màu đỏ, đường nối các điểm dạng –.
  • ‘bD-.’ các điểm hình kim cương màu xanh dương, đường nối các điểm dạng -.
  • ‘g^-‘ các điểm hình tam giác hướng lên màu xanh lá, đường nối các điểm dạng -.
  • Nếu bạn không muốn các điểm nối với nhau, có thể bỏ định dạng đường thẳng đi, ví dụ ‘go-‘ sẽ thành ‘go’

Vẽ nhiều tập điểm phân tán trên cùng đồ thị

Bạn có thể vẽ nhiều tập điểm phân tán trên cùng một đồ thị bằng cách gọi phương thức plot() nhiều lần. Ví dụ dưới đây sẽ vẽ hai đường đồ thị dựa trên hai tập điểm khác nhau với định dạng khác nhau:

import matplotlib.pyplot as plt

# Vẽ đồ thị
plt.plot([0, 1, 2, 3, 4], [1, 2, 3, 4, 10], 'go-', label='Python')
plt.plot([0, 1, 2, 3, 4], [10, 4, 3, 2, 1], 'ro-', label='C#')
plt.plot([2.5, 2.5, 2.5, 1.5, 0.5], [1, 3, 5, 7, 10], 'bo-', label='Java')

# Đặt tiêu đề và nhãn cho các trục
plt.title('Vẽ đồ thị trong Python với Matplotlib')
plt.xlabel('X')
plt.ylabel('Y')

# Hiển thị chú thích
plt.legend(loc='best')

# Hiển thị đồ thị

thư viện matplotlibthư viện matplotlib

Trong ví dụ này có thêm một số điểm cần chú ý:

  • Thêm nhãn cho từng tập điểm với tham số thứ 4 trong plot().
  • Hiển thị ghi chú các thành phần trong đồ thị với phương thức legend().
  • Hiển thị nhãn các trục tọa độ x, y với xlabel() và ylabel().

Vẽ nhiều đồ thị trong cùng một ảnh

Phần đầu bài viết chúng ta đã biết về phân cấp đối tượng trong Matplotlib, mỗi plt.plot() trả về một đối tượng Figure (là hình ảnh bên ngoài), trong Figure này có rất nhiều các đối tượng Axes là một đồ thị con bên trong. Trong phần này chúng ta sẽ vẽ hai đồ thị cạnh nhau nằm trong cùng một Figure (Hình ảnh).

import matplotlib.pyplot as plt

# Tạo các subplot
fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(10, 4), sharey=True, dpi=120)

# Vẽ đồ thị cho từng subplot
ax1.plot([0, 1, 2, 3, 4], [1, 2, 3, 4, 10], 'go-')
ax2.plot([0, 1, 2, 3, 4], [10, 4, 3, 2, 1], 'ro-')
ax3.plot([2.5, 2.5, 2.5, 1.5, 0.5], [1, 3, 5, 7, 10], 'bo-')

# Đặt tiêu đề cho từng đồ thị
ax1.set_title('Python')
ax2.set_title('C#')
ax3.set_title('Java')

# Đặt nhãn cho trục X
ax1.set_xlabel('X')
ax2.set_xlabel('X')
ax3.set_xlabel('X')

# Đặt nhãn cho trục Y
ax1.set_ylabel('Y')
ax2.set_ylabel('Y')
ax3.set_ylabel('Y')

# Đặt giới hạn cho trục X
ax1.set_xlim(0, 6)
ax2.set_xlim(0, 6)
ax3.set_xlim(0, 6)

# Đặt giới hạn cho trục Y
ax1.set_ylim(0, 12)
ax2.set_ylim(0, 12)
ax3.set_ylim(0, 12)

# Căn chỉnh bố cục
plt.tight_layout()

# Hiển thị đồ thị
plt.show()

vẽ đồ thị trong pythonvẽ đồ thị trong python

Vẽ tập hợp điểm phân tán với scatter()

Sự khác biệt giữa plot() và scatter():

  • plot() không có khả năng thay đổi màu và kích thước điểm trong tập hợp điểm ban đầu nhưng scatter() lại có thể.
  • plot() có thể vẽ các đường nối hai điểm liên tiếp, scatter() thì không.

Ví dụ dưới đây vẽ ra các điểm trên đồ thị với dữ liệu về chiều cao và cân nặng, mỗi điểm có màu ngẫu nhiên và có kích thước cũng ngẫu nhiên.

import matplotlib.pyplot as plt
import numpy as np

# Dữ liệu về chiều cao và cân nặng
height = np.array([167, 170, 149, 165, 155, 180, 166, 146, 159, 185, 145, 168, 172, 181, 169])
weight = np.array([86, 74, 66, 78, 68, 79, 90, 73, 70, 88, 66, 84, 67, 84, 77])

# Màu sắc và kích thước cho các điểm dữ liệu
colors = np.random.rand(15)
area = (30 * np.random.rand(15)) ** 2

# Đặt giới hạn cho trục x và y
plt.xlim(140, 200)
plt.ylim(60, 100)

# Tạo biểu đồ phân tán
plt.scatter(height, weight, s=area, c=colors)

# Đặt tiêu đề và nhãn trục
plt.title("Chiều cao và cân nặng")
plt.xlabel("Chiều cao - cm")
plt.ylabel("Cân nặng - kg")

# Hiển thị biểu đồ
plt.show()

Kết quả như sau:

vẽ biểu đồ trong pythonvẽ biểu đồ trong python

Bài viết gốc được đăng tải tại allaravel.com

Xem thêm tuyển dụng it hà nội, đà nẵng, hcm hấp dẫn trên Station D

Bài viết liên quan

Thị trường EdTech Vietnam- Nhiều tiềm năng nhưng còn bị bỏ ngỏ tại Việt Nam

Thị trường EdTech Vietnam- Nhiều tiềm năng nhưng còn bị bỏ ngỏ tại Việt Nam

Lĩnh vực EdTech (ứng dụng công nghệ vào các sản phẩm giáo dục) trên toàn cầu hiện nay đã tương đối phong phú với nhiều tên tuổi lớn phân phối đều trên các hạng mục như Broad Online Learning Platforms (nền tảng cung cấp khóa học online đại chúng – tiêu biểu như Coursera, Udemy, KhanAcademy,…) Learning Management Systems (hệ thống quản lý lớp học – tiêu biểu như Schoology, Edmodo, ClassDojo,…) Next-Gen Study Tools (công cụ hỗ trợ học tập – tiểu biểu như Kahoot!, Lumosity, Curriculet,…) Tech Learning (đào tạo công nghệ – tiêu biểu như Udacity, Codecademy, PluralSight,…), Enterprise Learning (đào tạo trong doanh nghiệp – tiêu biểu như Edcast, ExecOnline, Grovo,..),… Hiện nay thị trường EdTech tại Việt Nam đã đón nhận khoảng đầu tư khoảng 55 triệu đô cho lĩnh vực này nhiều đơn vị nước ngoài đang quan tâm mạnh đến thị trường này ngày càng nhiều hơn. Là một trong những xu hướng phát triển tốt, và có doanh nghiệp đã hoạt động khá lâu trong ngành nêu tại infographic như Topica, nhưng EdTech vẫn chỉ đang trong giai đoạn sơ khai tại Việt Nam. Tại Việt Nam, hệ sinh thái EdTech trong nước vẫn còn rất non trẻ và thiếu vắng nhiều tên tuổi trong các hạng mục như Enterprise Learning (mới chỉ có MANA), School Administration (hệ thống quản lý trường học) hay Search (tìm kiếm, so sánh trường và khóa học),… Với chỉ dưới 5% số dân công sở có sử dụng một trong các dịch vụ giáo dục online, EdTech cho thấy vẫn còn một thị trường rộng lớn đang chờ được khai phá. *** Vừa qua Station D đã công bố Báo cáo Vietnam IT Landscape 2019 đem đến cái nhìn toàn cảnh về các ứng dụng công...

By stationd
Bộ cài đặt Laravel Installer đã hỗ trợ tích hợp Jetstream

Bộ cài đặt Laravel Installer đã hỗ trợ tích hợp Jetstream

Bài viết được sự cho phép của tác giả Chung Nguyễn Hôm nay, nhóm Laravel đã phát hành một phiên bản chính mới của “ laravel/installer ” bao gồm hỗ trợ khởi động nhanh các dự án Jetstream. Với phiên bản mới này khi bạn chạy laravel new project-name , bạn sẽ nhận được các tùy chọn Jetstream. Ví dụ: API Authentication trong Laravel-Vue SPA sử dụng Jwt-auth Cách sử dụng Laravel với Socket.IO laravel new foo --jet --dev Sau đó, nó sẽ hỏi bạn thích stack Jetstream nào hơn: Which Jetstream stack do you prefer? [0] Livewire [1] inertia > livewire Will your application use teams? (yes/no) [no]: ... Nếu bạn đã cài bộ Laravel Installer, để nâng cấp lên phiên bản mới bạn chạy lệnh: composer global update Một số trường hợp cập nhật bị thất bại, bạn hãy thử, gỡ đi và cài đặt lại nha composer global remove laravel/installer composer global require laravel/installer Bài viết gốc được đăng tải tại chungnguyen.xyz Có thể bạn quan tâm: Cài đặt Laravel Làm thế nào để chạy Sql Server Installation Center sau khi đã cài đặt xong Sql Server? Quản lý các Laravel route gọn hơn và dễ dàng hơn Xem thêm Tuyển dụng lập trình Laravel hấp dẫn trên Station D

By stationd
Principle thiết kế của các sản phẩm nổi tiếng

Principle thiết kế của các sản phẩm nổi tiếng

Tác giả: Lưu Bình An Phù hợp cho các bạn thiết kế nào ko muốn làm code dạo, design dạo nữa, bạn muốn cái gì đó cao hơn ở tầng khái niệm Nếu lập trình chúng ta có các nguyên tắc chung khi viết code như KISS , DRY , thì trong thiết kế cũng có những nguyên tắc chính khi làm việc. Những nguyên tắc này sẽ là kim chỉ nam, nếu có tranh cãi giữa các member trong team, thì cứ đè nguyên tắc này ra mà giải quyết (nghe hơi có mùi cứng nhắc, mình thì thích tùy cơ ứng biến hơn) Tìm các vị trí tuyển dụng designer lương cao cho bạn Nguyên tắc thiết kế của GOV.UK Đây là danh sách của trang GOV.UK Bắt đầu với thứ user cần Làm ít hơn Thiết kế với dữ liệu Làm mọi thứ thật dễ dàng Lặp. Rồi lặp lại lần nữa Dành cho tất cả mọi người Hiểu ngữ cảnh hiện tại Làm dịch vụ digital, không phải làm website Nhất quán, nhưng không hòa tan (phải có chất riêng với thằng khác) Cởi mở, mọi thứ tốt hơn Bao trừu tượng luôn các bạn, trang Gov.uk này cũng có câu tổng quát rất hay Thiết kế tốt là thiết kế có thể sử dụng. Phục vụ cho nhiều đối tượng sử dụng, dễ đọc nhất nhất có thể. Nếu phải từ bỏ đẹp tinh tế – thì cứ bỏ luôn . Chúng ta tạo sản phẩm cho nhu cầu sử dụng, không phải cho người hâm mộ . Chúng ta thiết kế để cả nước sử dụng, không phải những người đã từng sử dụng web. Những người cần dịch vụ của chúng ta nhất là những người đang cảm thấy khó sử dụng dịch...

By stationd
Applicant Tracking System là gì? ATS hoạt động ra sao

Applicant Tracking System là gì? ATS hoạt động ra sao

Công nghệ phát triển hướng đến giải quyết và cải tiến cho mỗi quy trình, hoạt động của doanh nghiệp cũng như đời sống. Đối với lĩnh vực tuyển dụng, sự xuất hiện của phần mềm ATS (Applicant Tracking System) mang đến nhiều thay đổi đáng kể, cả đối với nhà tuyển dụng và ứng viên. Vậy phần mềm ATS là gì? Chúng được sử dụng ra sao? Những thắc mắc về phần mềm ATS trong tuyển dụng sẽ được Station D giải đáp tại bài viết dưới đây. Hệ thống sàng lọc ứng viên ATS (Applicant Tracking System) Applicant Tracking System là gì? Applicant Tracking System (ATS) hay còn gọi là Hệ thống quản lý hồ sơ ứng viên là phần mềm quản lý quy trình tuyển dụng từ đầu đến cuối một cách tự động hóa. ATS được thiết kế để giúp nhà tuyển dụng tiết kiệm thời gian và chi phí trong việc thu thập, sắp xếp và sàng lọc hồ sơ các ứng viên. Các tính năng nổi bật của Applicant Tracking System Các tính năng nổi bật của Applicant Tracking System Applicant Tracking System (ATS) là một công cụ quan trọng giúp các công ty quản lý quy trình tuyển dụng hiệu quả hơn. Cùng chúng tôi điểm qua các tính năng nổi bật của ATS: Sàng lọc và quản lý hồ sơ ứng viên Khả năng tìm kiếm và sàng lọc ứng viên là một trong các tính năng nổi bật nhất của ATS. Với việc sử dụng từ khóa và tiêu chí cụ thể, hệ thống có thể nhanh chóng tìm kiếm và sàng lọc các hồ sơ phù hợp, tự động loại bỏ những ứng viên không đạt yêu cầu. Điều này giúp nhà tuyển dụng tập trung vào những ứng viên...

By stationd
Hiểu về trình duyệt – How browsers work

Hiểu về trình duyệt – How browsers work

Bài viết được sự cho phép của vntesters.com Khi nhìn từ bên ngoài, trình duyệt web giống như một ứng dụng hiển thị những thông tin và tài nguyên từ server lên màn hình người sử dụng, nhưng để làm được công việc hiển thị đó đòi hỏi trình duyệt phải xử lý rất nhiều thông tin và nhiều tầng phía bên dưới. Việc chúng ta (Developers, Testers) tìm hiểu càng sâu tầng bên dưới để nắm được nguyên tắc hoạt động và xử lý của trình duyệt sẽ rất hữu ích trong công việc viết code, sử dụng các tài nguyên cũng như kiểm thử ứng dụng của mình. Cách để npm packages chạy trong browser Câu hỏi phỏng vấn mẹo về React: Component hay element được render trong browser? Khi hiểu được cách thức hoạt động của trình duyệt chúng ta có thể trả lời được rất nhiều câu hỏi như: Tại sao cùng một trang web lại hiển thị khác nhau trên hai trình duyệt? Tại sao chức năng này đang chạy tốt trên trình duyệt Firefox nhưng qua trình duyệt khác lại bị lỗi? Làm sao để trang web hiển thị nội dung nhanh và tối ưu hơn một chút?… Hy vọng sau bài này sẽ giúp các bạn có một cái nhìn rõ hơn cũng như giúp ích được trong công việc hiện tại. 1. Cấu trúc của một trình duyệt Trước tiên chúng ta đi qua cấu trúc, thành phần chung và cơ bản nhất của một trình duyệt web hiện đại, nó sẽ gồm các thành phần (tầng) như sau: Thành phần nằm phía trên là những thành phần gần với tương tác của người dùng, càng phía dưới thì càng sâu và nặng về xử lý dữ liệu hơn tương tác. Nhiệm...

By stationd
Tối ưu tỉ lệ chuyển đổi với Google Optimize và Google Analytics

Tối ưu tỉ lệ chuyển đổi với Google Optimize và Google Analytics

Tối ưu tỷ lệ chuyển đổi là một trong những yếu tố quan trọng mà một Growth Marketer không thể bỏ qua. Google Analytics là công cụ hữu hiệu và phổ biến nhất giúp chúng ta theo dõi, đo lường và tối ưu tỷ lệ chuyển đổi. Số liệu từ Google Analytics giúp chúng ta nhìn ra điểm cần thay đổi để tăng tỷ lệ chuyển đổi. Theo dõi chuyển đổi là quá trình thiết yếu nhưng cũng rất “khó nhằn”. Ngày nay, mọi người đang sử dụng điện thoại di động nhiều hơn và thường xuyên hơn khi mua hàng trực tuyến. Việc tối ưu hóa website phiên bản di động rất quan trọng. Traffic đến từ mobile khá lớn và làm ảnh hưởng nhiều tới tỷ lệ chuyển đổi. Để xem website của bạn có hoạt động tốt trên mobile hay không như thế nào? Làm gì khi tỷ lệ chuyển đổi giảm? Website phiên bản di động của bạn có nội dung hấp dẫn không? Không có những nút điều hướng hành động? Trang bị lỗi …, những điều này có thể ảnh hưởng tới tỉ lệ chuyển đổi Google Analytics, hiểu được điều này, bạn sẽ có cơ sở để khắc phục và hoàn thiện website của mình. Hãy cùng đến với chủ đề “DÙNG GOOGLE ANALYTICS TỐI ƯU TỈ LỆ CHUYỂN ĐỔI TRÊN MOBILE” với sự chia sẻ của diễn giả Nguyễn Minh Đức, CEO IM GROUP tại Vietnam Mobile Day 2018 nhé

By stationd