[Tự học C++] Giới thiệu về phạm vi(scope) của biến hoặc hàm cục bộ

Công Nghệ
[Tự học C++]  Giới thiệu về phạm vi(scope) của biến hoặc hàm cục bộ
Biến cục bộ Các tham số của hàm, cũng như các biến được xác định bên trong thân hàm, được gọi là các biến cục bộ (trái ngược với các biến toàn cục, mà chúng ta sẽ thảo luận trong chương tiếp theo). 1 2 3 4 5 6 int add( int x, int y) // function parameters x and y are local variables { int z{ x + y }; // z is a local variable too return z; } Trong bài học này, chúng tôi sẽ xem xét một số đặt điểm của các biến cục bộ một cách chi tiết hơn. Vòng đời của biến cục bộ Chúng tôi đã thảo luận về cách định nghĩa biến như int x; làm cho biến được khởi tạo khi câu lệnh này được thực thi. Các tham số của hàm được tạo và khởi tạo khi hàm được gọi và các biến trong thân hàm được tạo và khởi tạo tại thời điểm định nghĩa. Ví dụ: 1 2 3 4 5 6 int add( int x, int y) // x and y created and initialized here { int z{ x + y }; // z created and initialized here return z; } Câu hỏi tiếp theo là, khi nào thì một biến cục bộ bị hủy? Các biến cục bộ bị hủy theo thứ tự ngược lại của việc khởi tạo nó khi tới dấu ngoặc nhọn cuối cùng của hàm, nơi mà nó được định nghĩa. 1 2 3 4 5 6 int add( int x, int y) { int z{ x + y }; return z; } // z, y, and x destroyed here Giống như thời gian sống của một con người, chính là thời gian giữa lúc sinh và lúc chết của họ, thời...

Biến cục bộ

Các tham số của hàm, cũng như các biến được xác định bên trong thân hàm, được gọi là các biến cục bộ (trái ngược với các biến toàn cục, mà chúng ta sẽ thảo luận trong chương tiếp theo).

1
2
3
4
5
6
int add(int x, int y) // function parameters x and y are local variables
{
    int z{ x + y }; // z is a local variable too
 
    return z;
}

Trong bài học này, chúng tôi sẽ xem xét một số đặt điểm của các biến cục bộ một cách chi tiết hơn.

Vòng đời của biến cục bộ

Chúng tôi đã thảo luận về cách định nghĩa biến như int x; làm cho biến được khởi tạo khi câu lệnh này được thực thi. Các tham số của hàm được tạo và khởi tạo khi hàm được gọi và các biến trong thân hàm được tạo và khởi tạo tại thời điểm định nghĩa.

Ví dụ:

1
2
3
4
5
6
int add(int x, int y) // x and y created and initialized here
{
    int z{ x + y }; // z created and initialized here
 
    return z;
}

Câu hỏi tiếp theo là, khi nào thì một biến cục bộ bị hủy? Các biến cục bộ bị hủy theo thứ tự ngược lại của việc khởi tạo nó khi tới dấu ngoặc nhọn cuối cùng của hàm, nơi mà nó được định nghĩa.

1
2
3
4
5
6
int add(int x, int y)
{
    int z{ x + y };
 
    return z;
} // z, y, and x destroyed here

Giống như thời gian sống của một con người, chính là thời gian giữa lúc sinh và lúc chết của họ, thời gian sống của đối tượng được định nghĩa là thời gian giữa việc tạo ra và hủy nó. Lưu ý rằng việc tạo và hủy biến xảy ra khi chương trình đang chạy (được gọi là thời gian chạy), không phải lúc biên dịch. Do đó, Vòng đời là một thuộc tính trong thời gian chạy chương trình.

Các quy tắc dựa trên xung quanh việc tạo, khởi tạo và hủy đối tượng. Nghĩa là, các đối tượng phải được tạo và khởi tạo trước thời điểm nó định nghĩa và bị hủy ở phần cuối của dấu ngoặc nhọn.

Trong thực tế, đặc tả của C ++ cung cấp cho trình biên dịch rất nhiều tính linh hoạt để xác định khi nào các biến cục bộ được tạo và hủy. Các đối tượng có thể được tạo ra sớm hơn hoặc bị hủy ngay sau đó cho mục đích tối ưu hóa. Thông thường, các biến cục bộ được tạo khi hàm được gọi và bị hủy theo thứ tự ngược lại khi tạo hàm. Chúng ta sẽ thảo luận chi tiết hơn về điều này trong các bài học trong tiếp theo, khi chúng ta nói về ngăn xếp các cuộc gọi.

Ở đây, có một chương trình phức tạp hơi phức tạp giúp thể hiện thời gian tồn tại của một biến có tên x:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
#include <iostream>
 
void doSomething()
{
    std::cout << "Hello!n";
}
 
int main()
{
    int x{ 0 }; // x's lifetime begins here
 
    doSomething(); // x is still alive during this function call
 
    return 0;
} // x's lifetime ends here

Trong chương trình trên, vòng đời của x chạy từ điểm định nghĩa đến hết hàm main. Điều này bao gồm thời gian trong quá trình thực thi hàm doSomething.

Nhiều vị trí tuyển dụng C++ đãi ngộ tốt trên Station D

Phạm vi cục bộ

Một phạm vi chính là một vùng đươc xác định mà nơi đó các biến, hàm, đối tượng.. có thể được truy cập trong code mà không phát sinh lỗi. Khi một định danh(Tên biến, tên đối tượng or hàm…) có thể được truy cập, chúng ta nói nó nằm trong phạm vi. Khi một định danh không thể được truy cập, chúng tôi nói nó nằm ngoài phạm vi. Phạm vi là một thuộc tính thời gian khi biên dịch và cố gắng sử dụng một định danh khi nó không nằm trong phạm vi sẽ dẫn đến một lỗi biên dịch.

Phạm vi của biến đổi cục bộ bắt đầu tại điểm định nghĩa biến và dừng ở cuối dấu ngoặc nhọn, nơi mà chúng được xác định (hoặc cho các tham số của hàm, ở cuối hàm). Điều này đảm bảo các biến không thể được sử dụng trước điểm định nghĩa (ngay cả khi trình biên dịch chọn để tạo chúng trước đó).

Ở đây, một chương trình thể hiện phạm vi của một biến có tên x:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#include <iostream>
 
// x is not in scope anywhere in this function
void doSomething()
{
    std::cout << "Hello!n";
}
 
int main()
{
    // x can not be used here because it's not in scope yet
 
    int x{ 0 }; // x enters scope here and can now be used
 
    doSomething();
 
    return 0;
} // x goes out of scope here and can no longer be used

Trong chương trình trên, biến x có phạm vi tại điểm định nghĩa và đi ra khỏi phạm vi ở cuối hàm main. Lưu ý rằng biến x không nằm trong phạm vi bên trong của hàm doSomething. Thực tế là gọi hàm main doSomething không liên quan trong trường hợp này.

Lưu ý rằng các biến cục bộ có cùng định nghĩa về phạm vi và thời gian tồn tại. Đối với các biến cục bộ, phạm vi và thời gian tồn tại được liên kết – nghĩa là, thời gian sống của biến biến bắt đầu khi nó đi vào phạm vi và kết thúc khi nó vượt ra khỏi phạm vi.

Một vi dụ khác

Đây là một ví dụ phức tạp hơn một chút. Hãy nhớ rằng, vòng đời là một thuộc tính trong thời gian chạy và phạm vi là thuộc tính trong thời gian biên dịch.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#include <iostream>
 
int add(int x, int y) // x and y are created and enter scope here
{
    // x and y are visible/usable within this function only
    return x + y;
} // y and x go out of scope and are destroyed here
 
int main()
{
    int a{ 5 }; // a is created, initialized, and enters scope here
    int b{ 6 }; // b is created, initialized, and enters scope here
 
    // a and b are usable within this function only
    std::cout << add(a, b) << 'n'; // calls function add() with x=5 and y=6
 
    return 0;
} // b and a go out of scope and are destroyed here

Và chúng ta đã làm xong.

Lưu ý rằng nếu hàm add được gọi hai lần, tham số x và y sẽ được tạo và hủy hai lần – một lần cho mỗi cuộc gọi. Trong một chương trình có nhiều hàm và lệnh gọi hàm, các biến được tạo và hủy thường xuyên.

Tuyển dụng intern C++ đãi ngộ tốt, ứng tuyển ngay Station D

Tách biệt giữa các Hàm

Trong ví dụ trên, nó dễ dàng thấy rằng các biến a và b là các biến khác nhau từ x và y.

Bây giờ hãy xem xét chương trình tương tự sau đây:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#include <iostream>
 
int add(int x, int y) // add's x and y are created and enter scope here
{
    // add's x and y are visible/usable within this function only
    return x + y;
} // add's y and x go out of scope and are destroyed here
 
int main()
{
    int x{ 5 }; // main's x is created, initialized, and enters scope here
    int y{ 6 }; // main's y is created, initialized, and enters scope here
 
    // main's x and y are usable within this function only
    std::cout << add(x, y) << 'n'; // calls function add() with x=5 and y=6
 
    return 0;
} // main's y and x go out of scope and are destroyed here

Trong ví dụ này, tất cả những gì chúng ta đã thực hiện là thay đổi tên của các biến a và b bên trong hàm main thành x và y. Chương trình này biên dịch và chạy giống hệt nhau, mặc dù các hàm main và add cả hai đều có các biến có tên x và y. Tại sao điều này làm việc?

Đầu tiên, chúng ta cần nhận ra rằng mặc dù các hàm main và add cả hai đều có các biến có tên x và y, các biến này là khác biệt. X và y trong hàm main không liên quan gì đến x và y trong hàm add – chúng chỉ xảy ra để chia sẻ cùng tên.

Thứ hai, khi bên trong hàm main, các tên x và y được định nghĩa trong hàm main. Những biến đó chỉ có thể được nhìn thấy (và được sử dụng) bên trong hàm main. Tương tự, khi bên trong hàm add, tên x và y tham chiếu đến tham số hàm x và y, chỉ có thể nhìn thấy (và được sử dụng) bên trong add.

Nói tóm lại, cả add và main đều không biết rằng hàm kia có các biến cùng tên. Bởi vì các phạm vi không chồng chéo nhau, nên nó luôn luôn rõ ràng với trình biên dịch mà x và y đang được nhắc đến bất cứ lúc nào.

Chúng ta sẽ nói nhiều hơn về phạm vi cục bộ và các loại phạm vi khác, trong một chương tiếp theo.

Nơi định nghĩa biến cục bộ

Các biến cục bộ bên trong thân hàm nên được định nghĩa tại nơi gần với lần sử dụng đầu tiên của chúng là hợp lý nhất:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#include <iostream>
 
int main()
{
    std::cout << "Enter an integer: ";
    int x{}; // x defined here
    std::cin >> x; // and used here
 
    std::cout << "Enter another integer: ";
    int y{}; // y defined here
    std::cin >> y; // and used here
 
    int sum{ x + y }; // sum defined here
    std::cout << "The sum is: " << sum << 'n'; // and used here
 
    return 0;
}

Trong ví dụ trên, mỗi biến được định nghĩa ngay trước khi nó được sử dụng lần đầu tiên. Ở đó, bạn không cần phải nghiêm khắc về vấn đề này – nếu bạn thích hoán đổi các dòng 5 và 6, thì đó là điều tốt.

Nguồn gốc bài viết từ CafeDev
Xem ngay những tin đăng tuyển dụng IT mới nhất trên Station D

Bài viết liên quan

Bộ cài đặt Laravel Installer đã hỗ trợ tích hợp Jetstream

Bộ cài đặt Laravel Installer đã hỗ trợ tích hợp Jetstream

Bài viết được sự cho phép của tác giả Chung Nguyễn Hôm nay, nhóm Laravel đã phát hành một phiên bản chính mới của “ laravel/installer ” bao gồm hỗ trợ khởi động nhanh các dự án Jetstream. Với phiên bản mới này khi bạn chạy laravel new project-name , bạn sẽ nhận được các tùy chọn Jetstream. Ví dụ: API Authentication trong Laravel-Vue SPA sử dụng Jwt-auth Cách sử dụng Laravel với Socket.IO laravel new foo --jet --dev Sau đó, nó sẽ hỏi bạn thích stack Jetstream nào hơn: Which Jetstream stack do you prefer? [0] Livewire [1] inertia > livewire Will your application use teams? (yes/no) [no]: ... Nếu bạn đã cài bộ Laravel Installer, để nâng cấp lên phiên bản mới bạn chạy lệnh: composer global update Một số trường hợp cập nhật bị thất bại, bạn hãy thử, gỡ đi và cài đặt lại nha composer global remove laravel/installer composer global require laravel/installer Bài viết gốc được đăng tải tại chungnguyen.xyz Có thể bạn quan tâm: Cài đặt Laravel Làm thế nào để chạy Sql Server Installation Center sau khi đã cài đặt xong Sql Server? Quản lý các Laravel route gọn hơn và dễ dàng hơn Xem thêm Tuyển dụng lập trình Laravel hấp dẫn trên Station D

By stationd
Principle thiết kế của các sản phẩm nổi tiếng

Principle thiết kế của các sản phẩm nổi tiếng

Tác giả: Lưu Bình An Phù hợp cho các bạn thiết kế nào ko muốn làm code dạo, design dạo nữa, bạn muốn cái gì đó cao hơn ở tầng khái niệm Nếu lập trình chúng ta có các nguyên tắc chung khi viết code như KISS , DRY , thì trong thiết kế cũng có những nguyên tắc chính khi làm việc. Những nguyên tắc này sẽ là kim chỉ nam, nếu có tranh cãi giữa các member trong team, thì cứ đè nguyên tắc này ra mà giải quyết (nghe hơi có mùi cứng nhắc, mình thì thích tùy cơ ứng biến hơn) Tìm các vị trí tuyển dụng designer lương cao cho bạn Nguyên tắc thiết kế của GOV.UK Đây là danh sách của trang GOV.UK Bắt đầu với thứ user cần Làm ít hơn Thiết kế với dữ liệu Làm mọi thứ thật dễ dàng Lặp. Rồi lặp lại lần nữa Dành cho tất cả mọi người Hiểu ngữ cảnh hiện tại Làm dịch vụ digital, không phải làm website Nhất quán, nhưng không hòa tan (phải có chất riêng với thằng khác) Cởi mở, mọi thứ tốt hơn Bao trừu tượng luôn các bạn, trang Gov.uk này cũng có câu tổng quát rất hay Thiết kế tốt là thiết kế có thể sử dụng. Phục vụ cho nhiều đối tượng sử dụng, dễ đọc nhất nhất có thể. Nếu phải từ bỏ đẹp tinh tế – thì cứ bỏ luôn . Chúng ta tạo sản phẩm cho nhu cầu sử dụng, không phải cho người hâm mộ . Chúng ta thiết kế để cả nước sử dụng, không phải những người đã từng sử dụng web. Những người cần dịch vụ của chúng ta nhất là những người đang cảm thấy khó sử dụng dịch...

By stationd
Hiểu về trình duyệt – How browsers work

Hiểu về trình duyệt – How browsers work

Bài viết được sự cho phép của vntesters.com Khi nhìn từ bên ngoài, trình duyệt web giống như một ứng dụng hiển thị những thông tin và tài nguyên từ server lên màn hình người sử dụng, nhưng để làm được công việc hiển thị đó đòi hỏi trình duyệt phải xử lý rất nhiều thông tin và nhiều tầng phía bên dưới. Việc chúng ta (Developers, Testers) tìm hiểu càng sâu tầng bên dưới để nắm được nguyên tắc hoạt động và xử lý của trình duyệt sẽ rất hữu ích trong công việc viết code, sử dụng các tài nguyên cũng như kiểm thử ứng dụng của mình. Cách để npm packages chạy trong browser Câu hỏi phỏng vấn mẹo về React: Component hay element được render trong browser? Khi hiểu được cách thức hoạt động của trình duyệt chúng ta có thể trả lời được rất nhiều câu hỏi như: Tại sao cùng một trang web lại hiển thị khác nhau trên hai trình duyệt? Tại sao chức năng này đang chạy tốt trên trình duyệt Firefox nhưng qua trình duyệt khác lại bị lỗi? Làm sao để trang web hiển thị nội dung nhanh và tối ưu hơn một chút?… Hy vọng sau bài này sẽ giúp các bạn có một cái nhìn rõ hơn cũng như giúp ích được trong công việc hiện tại. 1. Cấu trúc của một trình duyệt Trước tiên chúng ta đi qua cấu trúc, thành phần chung và cơ bản nhất của một trình duyệt web hiện đại, nó sẽ gồm các thành phần (tầng) như sau: Thành phần nằm phía trên là những thành phần gần với tương tác của người dùng, càng phía dưới thì càng sâu và nặng về xử lý dữ liệu hơn tương tác. Nhiệm...

By stationd
Thị trường EdTech Vietnam- Nhiều tiềm năng nhưng còn bị bỏ ngỏ tại Việt Nam

Thị trường EdTech Vietnam- Nhiều tiềm năng nhưng còn bị bỏ ngỏ tại Việt Nam

Lĩnh vực EdTech (ứng dụng công nghệ vào các sản phẩm giáo dục) trên toàn cầu hiện nay đã tương đối phong phú với nhiều tên tuổi lớn phân phối đều trên các hạng mục như Broad Online Learning Platforms (nền tảng cung cấp khóa học online đại chúng – tiêu biểu như Coursera, Udemy, KhanAcademy,…) Learning Management Systems (hệ thống quản lý lớp học – tiêu biểu như Schoology, Edmodo, ClassDojo,…) Next-Gen Study Tools (công cụ hỗ trợ học tập – tiểu biểu như Kahoot!, Lumosity, Curriculet,…) Tech Learning (đào tạo công nghệ – tiêu biểu như Udacity, Codecademy, PluralSight,…), Enterprise Learning (đào tạo trong doanh nghiệp – tiêu biểu như Edcast, ExecOnline, Grovo,..),… Hiện nay thị trường EdTech tại Việt Nam đã đón nhận khoảng đầu tư khoảng 55 triệu đô cho lĩnh vực này nhiều đơn vị nước ngoài đang quan tâm mạnh đến thị trường này ngày càng nhiều hơn. Là một trong những xu hướng phát triển tốt, và có doanh nghiệp đã hoạt động khá lâu trong ngành nêu tại infographic như Topica, nhưng EdTech vẫn chỉ đang trong giai đoạn sơ khai tại Việt Nam. Tại Việt Nam, hệ sinh thái EdTech trong nước vẫn còn rất non trẻ và thiếu vắng nhiều tên tuổi trong các hạng mục như Enterprise Learning (mới chỉ có MANA), School Administration (hệ thống quản lý trường học) hay Search (tìm kiếm, so sánh trường và khóa học),… Với chỉ dưới 5% số dân công sở có sử dụng một trong các dịch vụ giáo dục online, EdTech cho thấy vẫn còn một thị trường rộng lớn đang chờ được khai phá. *** Vừa qua Station D đã công bố Báo cáo Vietnam IT Landscape 2019 đem đến cái nhìn toàn cảnh về các ứng dụng công...

By stationd