Top 15 thư viện Python tốt nhất cho Data Science trong 2022

Lập Trình
Top 15 thư viện Python tốt nhất cho Data Science trong 2022
Khi Python ngày càng nhận được nhiều sự quan tâm của cộng đồng Data Science trong những năm gần đây, tôi đã muốn tổng hợp cho các data scientists và engineers những thư viện được sử dụng nhiều nhất, dựa trên kinh nghiệm làm việc của bản thân. Và vì tất cả các thư viên đều là nguồn mở, nên chúng tôi đã thêm các commits, số lượng các contributors và các chỉ số khác từ Github với vai trò là các chỉ số proxy thể hiện mức độ nổi tiếng của thư viện đó Việc làm python lương cao trong tháng 1. NumPy (Commits: 15980, Contributors: 522) Khi bắt đầu giải quyết task về khoa học bằng Python, tập hợp phần mềm được thiết kế riêng cho scientific computing trong Python sẽ không thể không hỗ trợ SciPy Stack của Python (đừng nhầm lẫn với thư viện SciPy – là 1 phần của stack này, và cộng đồng của stack này). Tuy nhiên, stack này khá rộng, có hơn cả tá thư viện trong nó và chúng ta thì lại muốn tập trung vào các core packages (đặc biệt là những packages quan trọng nhất). Package cơ bản nhất, khi computation stack về khoa học được xây dựng là NumPy (viết tắt của Numerical Python), cung cấp rất nhiều tính năng hữu ích cho các phần operations trong n-arrays & matrics trong Python. Thư viện này cung cấp khả năng vector hóa các vận hành về toán trong type array NumPy, giúp cải thiện hiệu suất và theo đó là tốc độ execution. 2. SciPy (Commits: 17213, Contributors: 489) SciPy là 1 thư viện phần mềm cho engineering và khoa học. Một lần nữa bạn cần phải hiểu sự khác biệt giữa SciPy Stack và thư viện SciPy. SciPy...

Khi Python ngày càng nhận được nhiều sự quan tâm của cộng đồng Data Science trong những năm gần đây, tôi đã muốn tổng hợp cho các data scientists và engineers những thư viện được sử dụng nhiều nhất, dựa trên kinh nghiệm làm việc của bản thân.

Và vì tất cả các thư viên đều là nguồn mở, nên chúng tôi đã thêm các commits, số lượng các contributors và các chỉ số khác từ Github với vai trò là các chỉ số proxy thể hiện mức độ nổi tiếng của thư viện đó

Việc làm python lương cao trong tháng

1. NumPy (Commits: 15980, Contributors: 522)

Khi bắt đầu giải quyết task về khoa học bằng Python, tập hợp phần mềm được thiết kế riêng cho scientific computing trong Python sẽ không thể không hỗ trợ SciPy Stack của Python (đừng nhầm lẫn với thư viện SciPy – là 1 phần của stack này, và cộng đồng của stack này). Tuy nhiên, stack này khá rộng, có hơn cả tá thư viện trong nó và chúng ta thì lại muốn tập trung vào các core packages (đặc biệt là những packages quan trọng nhất).

Package cơ bản nhất, khi computation stack về khoa học được xây dựng là NumPy (viết tắt của Numerical Python), cung cấp rất nhiều tính năng hữu ích cho các phần operations trong n-arrays & matrics trong Python. Thư viện này cung cấp khả năng vector hóa các vận hành về toán trong type array NumPy, giúp cải thiện hiệu suất và theo đó là tốc độ execution.

2. SciPy (Commits: 17213, Contributors: 489)

SciPy là 1 thư viện phần mềm cho engineering và khoa học. Một lần nữa bạn cần phải hiểu sự khác biệt giữa SciPy Stack và thư viện SciPy. SciPy gồm các modules cho đại số tuyến tính, optimization, tích hợp và thống kế. Chức năng chính của thư viện SciPy được xây dựng trên NumPy, và arrays của nó sẽ tận dụng tối đa NumPy. Nó mang đến rất nhiều hoạt động hữu ích liên quan đến số như tích hợp số, optimization… qua các submodules chuyên biệt. Các hàm trong tất cả các submodules của SciPy đều được document tốt.

3. Pandas (Commits: 15089, Contributors: 762)

Pandas là 1 package Python được thiết kế để làm việc với dữ liệu đơn giản, trực quan, được “gắn nhãn” và có liên hệ với nhau. Pandas là công cụ hoàn hảo để tinh chỉnh và làm sạch dữ liệu. Pandas được thiết kế hỗ trợ cho các thao tác, tập hợp và visualize dữ liệu.

Có 2 data structure chính trong thư viện này:

“Series” — 1 chiều

“Data Frames”, 2 chiều

Ví dụ, khi muốn nhận Dataframe mới 2 loại structure này, bạn sẽ nhận DF bằng cách nối 1 hàng đơn với 1 DataFrame bằng cách đem tới 1 Series:

Danh sách những thứ bạn có thể làm với Pandas:

  • Dễ dàng xóa và thêm cột từ DataFrame
  • Chuyển data structures đến các objects DataFrame
  • Xử lý các data bị mất, như NaNs
  • Khả năng bhóm lại theo chức năng

Lịch sử Google Trends

Lịch sử pull requests của GitHub

Visualization.

4. Matplotlib (Commits: 21754, Contributors: 588)

Một core package của SciPy Stack và 1 thư viện Python khác được xây dựng riêng cho việc generation các visualizations mạnh mẽ, đơn giản là Matplotlib. Matplotlib là 1 phần của phần mềm giúp cho Python (cùng với sự hỗ trợ của NumPy, SciPy và Pandas) trở thành đối thủ nổi bật với các công cụ khoa học như MatLab hoặc Mathematica.

Tuy nhiên, thư viện này ở cấp độ thấp, đồng nghĩa là bạn sẽ cần phải viết nhiều code hơn để tiếp cận các cấp độ visualization cao cấp và bạn sẽ phải nỗ lực hơn so với khi sử dụng các công cụ cấp cao, tuy nhiên nỗ lực này là hoàn toàn xứng đáng.

Chỉ cần nỗ lực 1 chút, bạn có thể tạo được các visualization bất kì:

  • Line plots;
  • Scatter plots;
  • Bar charts và Histograms;
  • Pie charts;
  • Stem plots;
  • Contour plots;
  • Quiver plots;
  • Spectrograms.

Có rất nhiều công cụ để tạo nhãn, lưới, các biểu tượng/ kí hiệu/ chú giải và rất nhiều yếu tố format khác với Matplotlib. Về cơ bản, mọi thứ đều có thể custom được.

Thư viện này còn được rất nhiều platform hỗ trợ và tận dụng các GUI kít khác nhau để mô tả các visualizations kết quả. Thay đổi các IDEs (như IPython) sẽ hỗ trợ chức năng của Matplotlib.

Có vài thư viện bổ sung giúp việc visualization trở nên dễ dàng hơn.

5. Seaborn (Commits: 1699, Contributors: 71)

Seaborn hầu như tập trung vào việc visualization của các models thống kê; các visualizations như thế gồm heat maps tổng hợp dữ liệu nhưng vẫn mô tả được toàn bộ mức độ phân tán. Seaborn được phát triển dựa trên Matplotlib.

6. Bokeh (Commits: 15724, Contributors: 223)

Một thư viện visualization cực hay khác là Bokeh, hướng đến các visualization tương tác. Trái ngược với thư viện trước, Bokeh hoàn toàn độc lập so với Matplotlib. Bokeh tập trung chính vào tính tương tác và nó tạo các presentations qua các hệ điều hành hiện đại theo style của Data-Driven Documents (d3.js).

7. Plotly (Commits: 2486, Contributors: 33)

Plotly là toolbox cho web để xây dựng các visualizations, APIs được xây dựng bằng vài ngôn ngữ lập trình (như Python chẳng hạn). Có rất nhiều graphics mạnh mẽ, sáng tạo trên trang plot.ly. Để sử dụng Plotly, bạn sẽ cần set up API key riêng. Các graphics sẽ được xử lý phía server và được post lên internet, tuy nhiên vẫn có cách để ngăn việc này.

8. SciKit-Learn (Commits: 21793, Contributors: 842)

Scikits là các packages bổ sung của SciPy Stack được thiết kế cho các chức năng chuyên biêt như xử lý ảnh và hỗ trợ Machine Learning. Riêng với mảng Machine Learning, một trong những ưu điểm nổi bật của các packages này là scikit-learn. Package được xây dựng trên nền tảng của SciPy và tận dụng các operations về toán.

Scikit-learn có giao diện đơn giản, nhất quán, exposes a concise and consistent interface to the common machine learning algorithms, hỗ trợ việc mang Machine Learning vào các hệ thống production trở nên đơn giản hơn. Thư viện này bao gồm các code chất lượng và documentation hay, dễ sử dụng, hiệu suất cao, là chuẩn mực thực tế cho xây dựng Machine Learning bằng Python.

Deep Learning — Keras / TensorFlow / Theano

Liên quan đến Deep Learning, 1 trong những thư viện nổi bật và tiện ích dành cho Python là Keras, có thể hoạt động trên nền tảng của TensorFlow hoặc Theano.

Xem chi tiết bên dưới.

9. Theano. (Commits: 25870, Contributors: 300)

Theano là package Python định dạng các arrays đa chiều tương tự như NumPy, đi kèm với các operation về toán và expressions. Thư viện này được compiled, chạy hiệu quả trên tất cả các architectures. Do đội ngũ Machine Learning của Université de Montréal, Theano được sử dụng chính cho các hoạt động liên quan đến Machine Learning.

Lưu ý là Theano tích hợp với NumPy ở mức độ operation cấp thấp. Thư viện này cũng tối ưu hóa khả năng sử dụng GPU & CPU, giúp cho hiệu năng của computation thiên về data nhanh chóng hơn.

Hiệu quả và sự ổn định cũng mang đến những kết quả chính xác hơn, dù đó là những giá trị rất nhỏ như computation của log(1+x) sẽ cho ra kết quả chính xác đối với các giá trị nhỏ nhất của x.

10. TensorFlow. (Commits: 16785, Contributors: 795)

Do các developer của Google phát triển, TensorFlow là thư viện nguồn mở của graphs computations thuộc luồng dữ liệu, thích hợp với Machine Learning. TensorFlow đáp ứng các requirement cao cấp trong môi trường Google để train Neural Networks và thư viện kế nhiệm của DistBelief – 1 hệ thống Machine Learning dựa trên Neural Networks. Tuy nhiên, TensorFlow không chỉ sử dụng cho mục đích khoa học trong Google mà có thể áp dụng trong các dự án thực tế.

Tính năng quan trọng của TensorFlow is hệ thống nút đa layer, cho phép huấn luyện các neural networks trên datasets lớn 1 cách nhanh chóng, hỗ trợ khả năng nhận diện giọng nói và định vị vật thể trong ảnh của Google.

11. Keras. (Commits: 3519, Contributors: 428)

Keras là thư viện nguồn mở được viết bằng Python dùng để build các Neural Networks ở cấp độ cao cấp của interface. Thư viện này đơn giản và có khả năng mở rộng cao. Keras sử dụng backend là Theano hoặc TensorFlow nhưng gần đây, Microsoft đã cố gắng tích hợp CNTK (Cognitive Toolkit của Microsoft) thành back-end mới.

Cách tiếp cận đơn giản về thiết kế nhắm đến quy trình experimentation dễ dàng, nhanh chóng từ việc build các compact systems.

Bắt đầu dùng Keras rất đơn giản, tiếp theo là prototyping nhanh. Keras được viết bằng Python, theo mô-đun và mở rộng được. Không chỉ đơn giản và có tính định hướng cao, Keras vẫn hỗ trợ modeling rất mạnh mẽ.

Ý tưởng chung về Keras là dựa trên các layers và mọi thứ khác cũng đều được xây dựng xung quanh các layer này. Data được chuẩn bị trong các tensors, layer đầu tiên chịu trách nhiệm về input của các tensors, layer cuối cùng chịu trách nhiệm output và model được build ở giữa.

12. NLTK (Commits: 12449, Contributors: 196)

Tên của bộ thư viện này là viết tắt của Natural Language Toolkit & thư viện này được sử dụng cho các tasks đơn giản liên quan đến Natural Language Processing. NLTK từng dùng để hỗ trợ NLP & các lĩnh vực liên quan dạy và research (các lĩnh vực như Linguistics, Cognitive Science Artificial Intelligence…)

Chức năng của NLTK là giúp thực hiện các operations như text tagging, classification và tokenizing, định dạng các thực thể name, xây dựng cây corpus tiết lộ các dependencies inter & intra-sentence, stemming, semantic reasoning. Tất cả các building blocks hỗ trợ việc xây dựng các hệ thống research phức tạp cho các tasks khác nhau, ví dụ như các phân tích tâm lý hay tổng hợp tự nhiên.

13. Gensim (Commits: 2878, Contributors: 179)

Là 1 thư viện Python nguồn mở, Gensim implement các công cụ làm việc với vector space modeling và topic modeling. Thư viện này được thiết kế phù hợp với các text lớn, chỉ có trong xử lý in-memory. Sử dụng NumPy data structures và SciPy operations sẽ mang đến hiệu quả cực tốt. Cả hai đều hiệu quả và dễ sử dụng.

Gensim được thiết kế để dùng với các digital text thô và chưa được structure. Gensim implement các thuật toán như Dirichlet processes theo thứ bậ (HDP), phân tích ngữ nghĩa tiềm ẩn – latent semantic analysis (LSA) và phân bổ Dirichlet tiềm ẩn (LDA), cũng như tf-idf, projections ngẫu nhiên, word2vec và document2vec hỗ trợ việc kiểm tra các text để tái hiện lại các patterns words trong set documents (thường được đề cấp đến như 1 corpus). Tất cả các thuật toán đều là unsupervised —input duy nhất là corpus.

14. Scrapy (Commits: 6325, Contributors: 243)

Scrapy là thư viện để tạo các chương trình crawling, được biết đến với cái tên thông dụng spider bots, để thu hồi dữ liệu đã structure như thông tin liên hệ hoặc các URLs từ web.

Scrapy được viết bằng Python, nguồn mở, mục đích chính là để scraping nhưng cũng đóng vai trò như 1 framework đầy đủ tính năng, có thể tập hợp data từ APIs và hoạt động như crawlers đa năng.

Thư viện này còn hỗ trợ nguyên tắc Don’t Repeat Yourself nổi tiếng trong thiết kế interface design — nó khuyến khích người dùng viết code chung, universal, tái sử dụng được, để từ đó xây dựng và scaling các crawler lớn.

Kiến trúc của Scrapy được xây dựng xung quanh class Spider, đóng gói set instruction theo sau bởi Crawler.

15. Statsmodels (Commits: 8960, Contributors: 119)

statsmodels thư viện Python cho phép người dùng thực hiện data exploration bằng rất nhiều methods ước lượng các mô hình thống kê và thực hiện các xác nhận và phân tích thống kê.

Thư viện này cũng có nhiều tính năng hữu ích như các thống kê mô tả & kết quả khi sử dụng các models hồi quy tuyến tính, các mô hình tuyến tính tổng quán, mô hình lựa chọn rời rạc, mô hình tuyến tính, mô hình phân tích chuỗi thời gian, các estimators đa dạng khác.

Thư viện này còn cung cấp các chức năng phát họa được thiết kế chuyên biệt trong phân tích thống kê và được tinh chỉnh để tối ưu hiệu suất với các sets big data của data thống kê.

Kết luận

Trên đây là những thư viện được rất nhiều data scientistengineers đánh giá cao. Bên dưới là biểu đồ chi tiết về hoạt động trên Github của mỗi thư viện:

Dĩ nhiên, danh sách này vẫn chưa hoàn thiện và còn rất nhiều thư viện, framewoks đáng lưu ý khác. Chẳng hạn như các packages khác nhau của SciKit tập trung vào các domains riêng biệt như SciKit-Image làm việc với hình ảnh.

Nguồn: Station D via medium.com

Bài viết liên quan

Thị trường EdTech Vietnam- Nhiều tiềm năng nhưng còn bị bỏ ngỏ tại Việt Nam

Thị trường EdTech Vietnam- Nhiều tiềm năng nhưng còn bị bỏ ngỏ tại Việt Nam

Lĩnh vực EdTech (ứng dụng công nghệ vào các sản phẩm giáo dục) trên toàn cầu hiện nay đã tương đối phong phú với nhiều tên tuổi lớn phân phối đều trên các hạng mục như Broad Online Learning Platforms (nền tảng cung cấp khóa học online đại chúng – tiêu biểu như Coursera, Udemy, KhanAcademy,…) Learning Management Systems (hệ thống quản lý lớp học – tiêu biểu như Schoology, Edmodo, ClassDojo,…) Next-Gen Study Tools (công cụ hỗ trợ học tập – tiểu biểu như Kahoot!, Lumosity, Curriculet,…) Tech Learning (đào tạo công nghệ – tiêu biểu như Udacity, Codecademy, PluralSight,…), Enterprise Learning (đào tạo trong doanh nghiệp – tiêu biểu như Edcast, ExecOnline, Grovo,..),… Hiện nay thị trường EdTech tại Việt Nam đã đón nhận khoảng đầu tư khoảng 55 triệu đô cho lĩnh vực này nhiều đơn vị nước ngoài đang quan tâm mạnh đến thị trường này ngày càng nhiều hơn. Là một trong những xu hướng phát triển tốt, và có doanh nghiệp đã hoạt động khá lâu trong ngành nêu tại infographic như Topica, nhưng EdTech vẫn chỉ đang trong giai đoạn sơ khai tại Việt Nam. Tại Việt Nam, hệ sinh thái EdTech trong nước vẫn còn rất non trẻ và thiếu vắng nhiều tên tuổi trong các hạng mục như Enterprise Learning (mới chỉ có MANA), School Administration (hệ thống quản lý trường học) hay Search (tìm kiếm, so sánh trường và khóa học),… Với chỉ dưới 5% số dân công sở có sử dụng một trong các dịch vụ giáo dục online, EdTech cho thấy vẫn còn một thị trường rộng lớn đang chờ được khai phá. *** Vừa qua Station D đã công bố Báo cáo Vietnam IT Landscape 2019 đem đến cái nhìn toàn cảnh về các ứng dụng công...

By stationd
Bộ cài đặt Laravel Installer đã hỗ trợ tích hợp Jetstream

Bộ cài đặt Laravel Installer đã hỗ trợ tích hợp Jetstream

Bài viết được sự cho phép của tác giả Chung Nguyễn Hôm nay, nhóm Laravel đã phát hành một phiên bản chính mới của “ laravel/installer ” bao gồm hỗ trợ khởi động nhanh các dự án Jetstream. Với phiên bản mới này khi bạn chạy laravel new project-name , bạn sẽ nhận được các tùy chọn Jetstream. Ví dụ: API Authentication trong Laravel-Vue SPA sử dụng Jwt-auth Cách sử dụng Laravel với Socket.IO laravel new foo --jet --dev Sau đó, nó sẽ hỏi bạn thích stack Jetstream nào hơn: Which Jetstream stack do you prefer? [0] Livewire [1] inertia > livewire Will your application use teams? (yes/no) [no]: ... Nếu bạn đã cài bộ Laravel Installer, để nâng cấp lên phiên bản mới bạn chạy lệnh: composer global update Một số trường hợp cập nhật bị thất bại, bạn hãy thử, gỡ đi và cài đặt lại nha composer global remove laravel/installer composer global require laravel/installer Bài viết gốc được đăng tải tại chungnguyen.xyz Có thể bạn quan tâm: Cài đặt Laravel Làm thế nào để chạy Sql Server Installation Center sau khi đã cài đặt xong Sql Server? Quản lý các Laravel route gọn hơn và dễ dàng hơn Xem thêm Tuyển dụng lập trình Laravel hấp dẫn trên Station D

By stationd
Principle thiết kế của các sản phẩm nổi tiếng

Principle thiết kế của các sản phẩm nổi tiếng

Tác giả: Lưu Bình An Phù hợp cho các bạn thiết kế nào ko muốn làm code dạo, design dạo nữa, bạn muốn cái gì đó cao hơn ở tầng khái niệm Nếu lập trình chúng ta có các nguyên tắc chung khi viết code như KISS , DRY , thì trong thiết kế cũng có những nguyên tắc chính khi làm việc. Những nguyên tắc này sẽ là kim chỉ nam, nếu có tranh cãi giữa các member trong team, thì cứ đè nguyên tắc này ra mà giải quyết (nghe hơi có mùi cứng nhắc, mình thì thích tùy cơ ứng biến hơn) Tìm các vị trí tuyển dụng designer lương cao cho bạn Nguyên tắc thiết kế của GOV.UK Đây là danh sách của trang GOV.UK Bắt đầu với thứ user cần Làm ít hơn Thiết kế với dữ liệu Làm mọi thứ thật dễ dàng Lặp. Rồi lặp lại lần nữa Dành cho tất cả mọi người Hiểu ngữ cảnh hiện tại Làm dịch vụ digital, không phải làm website Nhất quán, nhưng không hòa tan (phải có chất riêng với thằng khác) Cởi mở, mọi thứ tốt hơn Bao trừu tượng luôn các bạn, trang Gov.uk này cũng có câu tổng quát rất hay Thiết kế tốt là thiết kế có thể sử dụng. Phục vụ cho nhiều đối tượng sử dụng, dễ đọc nhất nhất có thể. Nếu phải từ bỏ đẹp tinh tế – thì cứ bỏ luôn . Chúng ta tạo sản phẩm cho nhu cầu sử dụng, không phải cho người hâm mộ . Chúng ta thiết kế để cả nước sử dụng, không phải những người đã từng sử dụng web. Những người cần dịch vụ của chúng ta nhất là những người đang cảm thấy khó sử dụng dịch...

By stationd
Applicant Tracking System là gì? ATS hoạt động ra sao

Applicant Tracking System là gì? ATS hoạt động ra sao

Công nghệ phát triển hướng đến giải quyết và cải tiến cho mỗi quy trình, hoạt động của doanh nghiệp cũng như đời sống. Đối với lĩnh vực tuyển dụng, sự xuất hiện của phần mềm ATS (Applicant Tracking System) mang đến nhiều thay đổi đáng kể, cả đối với nhà tuyển dụng và ứng viên. Vậy phần mềm ATS là gì? Chúng được sử dụng ra sao? Những thắc mắc về phần mềm ATS trong tuyển dụng sẽ được Station D giải đáp tại bài viết dưới đây. Hệ thống sàng lọc ứng viên ATS (Applicant Tracking System) Applicant Tracking System là gì? Applicant Tracking System (ATS) hay còn gọi là Hệ thống quản lý hồ sơ ứng viên là phần mềm quản lý quy trình tuyển dụng từ đầu đến cuối một cách tự động hóa. ATS được thiết kế để giúp nhà tuyển dụng tiết kiệm thời gian và chi phí trong việc thu thập, sắp xếp và sàng lọc hồ sơ các ứng viên. Các tính năng nổi bật của Applicant Tracking System Các tính năng nổi bật của Applicant Tracking System Applicant Tracking System (ATS) là một công cụ quan trọng giúp các công ty quản lý quy trình tuyển dụng hiệu quả hơn. Cùng chúng tôi điểm qua các tính năng nổi bật của ATS: Sàng lọc và quản lý hồ sơ ứng viên Khả năng tìm kiếm và sàng lọc ứng viên là một trong các tính năng nổi bật nhất của ATS. Với việc sử dụng từ khóa và tiêu chí cụ thể, hệ thống có thể nhanh chóng tìm kiếm và sàng lọc các hồ sơ phù hợp, tự động loại bỏ những ứng viên không đạt yêu cầu. Điều này giúp nhà tuyển dụng tập trung vào những ứng viên...

By stationd
Hiểu về trình duyệt – How browsers work

Hiểu về trình duyệt – How browsers work

Bài viết được sự cho phép của vntesters.com Khi nhìn từ bên ngoài, trình duyệt web giống như một ứng dụng hiển thị những thông tin và tài nguyên từ server lên màn hình người sử dụng, nhưng để làm được công việc hiển thị đó đòi hỏi trình duyệt phải xử lý rất nhiều thông tin và nhiều tầng phía bên dưới. Việc chúng ta (Developers, Testers) tìm hiểu càng sâu tầng bên dưới để nắm được nguyên tắc hoạt động và xử lý của trình duyệt sẽ rất hữu ích trong công việc viết code, sử dụng các tài nguyên cũng như kiểm thử ứng dụng của mình. Cách để npm packages chạy trong browser Câu hỏi phỏng vấn mẹo về React: Component hay element được render trong browser? Khi hiểu được cách thức hoạt động của trình duyệt chúng ta có thể trả lời được rất nhiều câu hỏi như: Tại sao cùng một trang web lại hiển thị khác nhau trên hai trình duyệt? Tại sao chức năng này đang chạy tốt trên trình duyệt Firefox nhưng qua trình duyệt khác lại bị lỗi? Làm sao để trang web hiển thị nội dung nhanh và tối ưu hơn một chút?… Hy vọng sau bài này sẽ giúp các bạn có một cái nhìn rõ hơn cũng như giúp ích được trong công việc hiện tại. 1. Cấu trúc của một trình duyệt Trước tiên chúng ta đi qua cấu trúc, thành phần chung và cơ bản nhất của một trình duyệt web hiện đại, nó sẽ gồm các thành phần (tầng) như sau: Thành phần nằm phía trên là những thành phần gần với tương tác của người dùng, càng phía dưới thì càng sâu và nặng về xử lý dữ liệu hơn tương tác. Nhiệm...

By stationd
Tối ưu tỉ lệ chuyển đổi với Google Optimize và Google Analytics

Tối ưu tỉ lệ chuyển đổi với Google Optimize và Google Analytics

Tối ưu tỷ lệ chuyển đổi là một trong những yếu tố quan trọng mà một Growth Marketer không thể bỏ qua. Google Analytics là công cụ hữu hiệu và phổ biến nhất giúp chúng ta theo dõi, đo lường và tối ưu tỷ lệ chuyển đổi. Số liệu từ Google Analytics giúp chúng ta nhìn ra điểm cần thay đổi để tăng tỷ lệ chuyển đổi. Theo dõi chuyển đổi là quá trình thiết yếu nhưng cũng rất “khó nhằn”. Ngày nay, mọi người đang sử dụng điện thoại di động nhiều hơn và thường xuyên hơn khi mua hàng trực tuyến. Việc tối ưu hóa website phiên bản di động rất quan trọng. Traffic đến từ mobile khá lớn và làm ảnh hưởng nhiều tới tỷ lệ chuyển đổi. Để xem website của bạn có hoạt động tốt trên mobile hay không như thế nào? Làm gì khi tỷ lệ chuyển đổi giảm? Website phiên bản di động của bạn có nội dung hấp dẫn không? Không có những nút điều hướng hành động? Trang bị lỗi …, những điều này có thể ảnh hưởng tới tỉ lệ chuyển đổi Google Analytics, hiểu được điều này, bạn sẽ có cơ sở để khắc phục và hoàn thiện website của mình. Hãy cùng đến với chủ đề “DÙNG GOOGLE ANALYTICS TỐI ƯU TỈ LỆ CHUYỂN ĐỔI TRÊN MOBILE” với sự chia sẻ của diễn giả Nguyễn Minh Đức, CEO IM GROUP tại Vietnam Mobile Day 2018 nhé

By stationd