Gợi ý trả lời câu hỏi phỏng vấn Data Scientist hay nhất

Kỹ Năng Mềm
Gợi ý trả lời câu hỏi phỏng vấn Data Scientist hay nhất
Phỏng vấn Data Scientist liệu có phải chỉ là những câu hỏi liên quan tới giải thuật và phân tích dữ liệu? Lựa chọn bước đi trên con đường làm Data Scientist , mong rằng bộ câu hỏi dưới đây có thể giúp đỡ bạn phần nào trong quá trình phỏng vấn và ứng tuyển vị trí Data Scientist. 1. Những library nào thường được bạn sử dụng? Khởi động với câu hỏi phỏng vấn Data Scientist đầu tiên, luôn là câu hỏi nhẹ nhàng nhưng không kém phần tinh tế. Nhưng library nào bạn thường sử dụng ở vị trí Data Scientist ? Việc sử dụng library nào tuỳ thuộc vào kinh nghiệm của bản thân ứng viên, tuy nhiên có một số library thường được sử dụng nhiều. Tensor Flow Pandas NumPy SciPy Scrapy Librosa MatPlotLib Tensor Flow và Pandas anh em chắc không còn xa lạ gì. Tuỳ vào kinh nghiệm thực tế cũng như quá trình làm việc. Ứng viên có thể nêu ra các libraries thân thuộc hoặc có kinh nghiệm nhiều hơn. Ngoài ra người phỏng vấn cũng sẽ hỏi các câu hỏi sâu hơn liên quan tới kinh nghiệm sử dụng thực tế của từng library. Một số câu hỏi khác có thể chuẩn bị thêm: Thuật toán pruning trong cây quyết định (decision tree) k-fold cross-validation là gì? Eigenvalue và eigenvector là gì? 2. RNN (recurrent neural network) là gì? Câu hỏi thứ hai phỏng vấn Data Scientist liên quan tới khái niệm cơ bản của Recurrent Neural Network. RNN là một thuật toán sử dụng dữ liệu tuần tự. RNN được sử dụng trong dịch ngôn ngữ, nhận dạng giọng nói, chụp ảnh, v.v. Có nhiều loại mạng RNN khác nhau như một-một, một-nhiều, nhiều-một và nhiều-nhiều. RNN được sử dụng...

Phỏng vấn Data Scientist liệu có phải chỉ là những câu hỏi liên quan tới giải thuật và phân tích dữ liệu?

Lựa chọn bước đi trên con đường làm Data Scientist, mong rằng bộ câu hỏi dưới đây có thể giúp đỡ bạn phần nào trong quá trình phỏng vấn và ứng tuyển vị trí Data Scientist.

Data ScientistData Scientist

1. Những library nào thường được bạn sử dụng?

Khởi động với câu hỏi phỏng vấn Data Scientist đầu tiên, luôn là câu hỏi nhẹ nhàng nhưng không kém phần tinh tế.

Nhưng library nào bạn thường sử dụng ở vị trí Data Scientist? Việc sử dụng library nào tuỳ thuộc vào kinh nghiệm của bản thân ứng viên, tuy nhiên có một số library thường được sử dụng nhiều.

    • Pandas
    • NumPy
    • SciPy
    • Scrapy
    • Librosa
    • MatPlotLib

Phỏng vấn Data ScientistPhỏng vấn Data Scientist

Tensor Flow và Pandas anh em chắc không còn xa lạ gì. Tuỳ vào kinh nghiệm thực tế cũng như quá trình làm việc. Ứng viên có thể nêu ra các libraries thân thuộc hoặc có kinh nghiệm nhiều hơn. Ngoài ra người phỏng vấn cũng sẽ hỏi các câu hỏi sâu hơn liên quan tới kinh nghiệm sử dụng thực tế của từng library.

Một số câu hỏi khác có thể chuẩn bị thêm:

    • Thuật toán pruning trong cây quyết định (decision tree)
    • k-fold cross-validation là gì?
    • Eigenvalue và eigenvector là gì?

2. RNN (recurrent neural network) là gì?

Câu hỏi thứ hai phỏng vấn Data Scientist liên quan tới khái niệm cơ bản của Recurrent Neural Network.

RNN là một thuật toán sử dụng dữ liệu tuần tự. RNN được sử dụng trong dịch ngôn ngữ, nhận dạng giọng nói, chụp ảnh, v.v. Có nhiều loại mạng RNN khác nhau như một-một, một-nhiều, nhiều-một và nhiều-nhiều. RNN được sử dụng trong tìm kiếm bằng giọng nói của Google và Siri của Apple.

Phỏng vấn Data ScientistPhỏng vấn Data Scientist

RNN là thuật toán khá phổ biến trong giới khoa học dữ liệu, chính vì vậy nó có rất nhiều ứng dụng trong thực tế. Để chuẩn bị tốt cho buổi phỏng vấn, anh em có thể ôn lại các khái niệm cơ bản về RNN.

Một số câu hỏi có thể chuẩn bị thêm cho phần khái niệm này:

    • Feature vectors là gì?
    • Các bước để tạo ra cây quyết định (decision tree)
    • Logistic regression là gì?

3. Tính toán độ chính xác với confusion matrix như thế nào?

Câu hỏi phỏng vấn Data Scientist tập trung vào thực tế tính toán độ chính xác của dữ liệu với confusion matrix. Câu hỏi này đòi hỏi ứng viên phải có hiểu biết cụ thể với Confusion Matrix.

Đối với hình ảnh dưới đây ta có dữ liệu của tổng dữ liệu, giá trị thực và giá trị dự đoán. Công thức tính toạn độ chính xác ở đây sẽ là:

Accuracy = (True Positive + True Negative) / Total Observations

Theo như công thức này, ta có thể tính toán được giá trị

    • = (262 + 347) / 650
    • = 609 / 650
    • = 0.93

Vậy độ chính xác cuối cùng được tính ra ở đây là 93%.

Phỏng vấn Data ScientistPhỏng vấn Data Scientist

Một số câu hỏi khác có thể chuẩn bị thêm:

    • Phương trình và tính toán độ chính xác và tỷ lệ thu hồi cho hình ảnh sau

4. Tại sao R lại được sử dụng trong Data Visualization?

Câu hỏi thứ 4 phỏng vấn Data Scientist tập trung vào ngôn ngữ và các điểm mạnh giúp ngôn ngữ có thể đáp ứng được các nhu cầu cụ thể.

Trong trường hợp này là Data Visualization, đã là Data Scientist chắc chắn bạn đã một lần trực quan hoá dữ liệu. Việc trực quan hoá dữ liệu và việc rất quan trọng và thường xuyên được làm bởi các nhà khoa học dữ liệu.

Ngôn ngữ R được sử dụng nhiều trong việc trực quan hoá dữ liệu thường bởi một số lý do sau đây:

    • Hầu hết các loại biểu đồ đều có thể được tạo ra bởi R
    • R có nhiều loại thư viện lattice, ggplot2, leaflet, hỗ trợ rất tốt khi custom
    • So với Python, R cho phép chỉnh sửa hoặc custom lại các loại biểu đồ

Phỏng vấn Data ScientistPhỏng vấn Data Scientist

Một số câu hỏi có thể chuẩn bị thêm cho phần này:

    • Sự khác biệt giữa box plot và histogram?
    • Bias-variance trade-off là gì?

Việc làm Data Analytics HOT tại TP. Hồ Chí Minh

5. Sự khác biệt giữa Normalisation và Standardization là gì?

Câu hỏi thứ 5 phỏng vấn Data Scientist tập trung vào phân tích sự khác biệt giữa Normalisation và Standardization

Để trả lời câu hỏi này, ta sẽ tập trung đi vào phân tích sự khác biệt giữa kỹ thuật convert data (technique of converting data), formula của từng loại này. Chi tiết được viết ra ở bảng dưới đây

Standardization Normalization
Kỹ thuật chuyển đổi dữ liệu theo cách được phân phối bình thường và có độ lệch chuẩn là 1 và giá trị trung bình là 0. Kỹ thuật chuyển đổi tất cả các giá trị dữ liệu nằm trong khoảng từ 1 đến 0 được gọi là Chuẩn hóa. Điều này còn được gọi là tỷ lệ tối thiểu-tối đa.
Quá trình tiêu chuẩn hóa đảm bảo rằng dữ liệu tuân theo phân phối chuẩn chuẩn. (theo normal standard) Dữ liệu trở về phạm vi từ 0 đến 1 được xử lý bằng Chuẩn hóa. (Normalization)
Standardization formula X’ = (X – ) / Normalization formula Công thức sử dụng: X’ = (X – Xmin) / (Xmax – Xmin)

Phỏng vấn Data ScientistPhỏng vấn Data Scientist

Một số câu hỏi có thể chuẩn bị thêm cho phần so sánh này:

    • Nêu sự khác biệt giữa error và residual error?
    • Sự khác biệt giữa Point Estimates và Confidence Interval?

6. Tham khảo về phỏng vấn Data Scientist

Cảm ơn anh em đã đọc bài – Thank you for your time – Happy coding!

Tác giả: Kiên Nguyễn

Xem thêm:

Xem thêm Việc làm IT hấp dẫn trên Station D

Bài viết liên quan

Thị trường EdTech Vietnam- Nhiều tiềm năng nhưng còn bị bỏ ngỏ tại Việt Nam

Thị trường EdTech Vietnam- Nhiều tiềm năng nhưng còn bị bỏ ngỏ tại Việt Nam

Lĩnh vực EdTech (ứng dụng công nghệ vào các sản phẩm giáo dục) trên toàn cầu hiện nay đã tương đối phong phú với nhiều tên tuổi lớn phân phối đều trên các hạng mục như Broad Online Learning Platforms (nền tảng cung cấp khóa học online đại chúng – tiêu biểu như Coursera, Udemy, KhanAcademy,…) Learning Management Systems (hệ thống quản lý lớp học – tiêu biểu như Schoology, Edmodo, ClassDojo,…) Next-Gen Study Tools (công cụ hỗ trợ học tập – tiểu biểu như Kahoot!, Lumosity, Curriculet,…) Tech Learning (đào tạo công nghệ – tiêu biểu như Udacity, Codecademy, PluralSight,…), Enterprise Learning (đào tạo trong doanh nghiệp – tiêu biểu như Edcast, ExecOnline, Grovo,..),… Hiện nay thị trường EdTech tại Việt Nam đã đón nhận khoảng đầu tư khoảng 55 triệu đô cho lĩnh vực này nhiều đơn vị nước ngoài đang quan tâm mạnh đến thị trường này ngày càng nhiều hơn. Là một trong những xu hướng phát triển tốt, và có doanh nghiệp đã hoạt động khá lâu trong ngành nêu tại infographic như Topica, nhưng EdTech vẫn chỉ đang trong giai đoạn sơ khai tại Việt Nam. Tại Việt Nam, hệ sinh thái EdTech trong nước vẫn còn rất non trẻ và thiếu vắng nhiều tên tuổi trong các hạng mục như Enterprise Learning (mới chỉ có MANA), School Administration (hệ thống quản lý trường học) hay Search (tìm kiếm, so sánh trường và khóa học),… Với chỉ dưới 5% số dân công sở có sử dụng một trong các dịch vụ giáo dục online, EdTech cho thấy vẫn còn một thị trường rộng lớn đang chờ được khai phá. *** Vừa qua Station D đã công bố Báo cáo Vietnam IT Landscape 2019 đem đến cái nhìn toàn cảnh về các ứng dụng công...

By stationd
Bộ cài đặt Laravel Installer đã hỗ trợ tích hợp Jetstream

Bộ cài đặt Laravel Installer đã hỗ trợ tích hợp Jetstream

Bài viết được sự cho phép của tác giả Chung Nguyễn Hôm nay, nhóm Laravel đã phát hành một phiên bản chính mới của “ laravel/installer ” bao gồm hỗ trợ khởi động nhanh các dự án Jetstream. Với phiên bản mới này khi bạn chạy laravel new project-name , bạn sẽ nhận được các tùy chọn Jetstream. Ví dụ: API Authentication trong Laravel-Vue SPA sử dụng Jwt-auth Cách sử dụng Laravel với Socket.IO laravel new foo --jet --dev Sau đó, nó sẽ hỏi bạn thích stack Jetstream nào hơn: Which Jetstream stack do you prefer? [0] Livewire [1] inertia > livewire Will your application use teams? (yes/no) [no]: ... Nếu bạn đã cài bộ Laravel Installer, để nâng cấp lên phiên bản mới bạn chạy lệnh: composer global update Một số trường hợp cập nhật bị thất bại, bạn hãy thử, gỡ đi và cài đặt lại nha composer global remove laravel/installer composer global require laravel/installer Bài viết gốc được đăng tải tại chungnguyen.xyz Có thể bạn quan tâm: Cài đặt Laravel Làm thế nào để chạy Sql Server Installation Center sau khi đã cài đặt xong Sql Server? Quản lý các Laravel route gọn hơn và dễ dàng hơn Xem thêm Tuyển dụng lập trình Laravel hấp dẫn trên Station D

By stationd
Principle thiết kế của các sản phẩm nổi tiếng

Principle thiết kế của các sản phẩm nổi tiếng

Tác giả: Lưu Bình An Phù hợp cho các bạn thiết kế nào ko muốn làm code dạo, design dạo nữa, bạn muốn cái gì đó cao hơn ở tầng khái niệm Nếu lập trình chúng ta có các nguyên tắc chung khi viết code như KISS , DRY , thì trong thiết kế cũng có những nguyên tắc chính khi làm việc. Những nguyên tắc này sẽ là kim chỉ nam, nếu có tranh cãi giữa các member trong team, thì cứ đè nguyên tắc này ra mà giải quyết (nghe hơi có mùi cứng nhắc, mình thì thích tùy cơ ứng biến hơn) Tìm các vị trí tuyển dụng designer lương cao cho bạn Nguyên tắc thiết kế của GOV.UK Đây là danh sách của trang GOV.UK Bắt đầu với thứ user cần Làm ít hơn Thiết kế với dữ liệu Làm mọi thứ thật dễ dàng Lặp. Rồi lặp lại lần nữa Dành cho tất cả mọi người Hiểu ngữ cảnh hiện tại Làm dịch vụ digital, không phải làm website Nhất quán, nhưng không hòa tan (phải có chất riêng với thằng khác) Cởi mở, mọi thứ tốt hơn Bao trừu tượng luôn các bạn, trang Gov.uk này cũng có câu tổng quát rất hay Thiết kế tốt là thiết kế có thể sử dụng. Phục vụ cho nhiều đối tượng sử dụng, dễ đọc nhất nhất có thể. Nếu phải từ bỏ đẹp tinh tế – thì cứ bỏ luôn . Chúng ta tạo sản phẩm cho nhu cầu sử dụng, không phải cho người hâm mộ . Chúng ta thiết kế để cả nước sử dụng, không phải những người đã từng sử dụng web. Những người cần dịch vụ của chúng ta nhất là những người đang cảm thấy khó sử dụng dịch...

By stationd
Applicant Tracking System là gì? ATS hoạt động ra sao

Applicant Tracking System là gì? ATS hoạt động ra sao

Công nghệ phát triển hướng đến giải quyết và cải tiến cho mỗi quy trình, hoạt động của doanh nghiệp cũng như đời sống. Đối với lĩnh vực tuyển dụng, sự xuất hiện của phần mềm ATS (Applicant Tracking System) mang đến nhiều thay đổi đáng kể, cả đối với nhà tuyển dụng và ứng viên. Vậy phần mềm ATS là gì? Chúng được sử dụng ra sao? Những thắc mắc về phần mềm ATS trong tuyển dụng sẽ được Station D giải đáp tại bài viết dưới đây. Hệ thống sàng lọc ứng viên ATS (Applicant Tracking System) Applicant Tracking System là gì? Applicant Tracking System (ATS) hay còn gọi là Hệ thống quản lý hồ sơ ứng viên là phần mềm quản lý quy trình tuyển dụng từ đầu đến cuối một cách tự động hóa. ATS được thiết kế để giúp nhà tuyển dụng tiết kiệm thời gian và chi phí trong việc thu thập, sắp xếp và sàng lọc hồ sơ các ứng viên. Các tính năng nổi bật của Applicant Tracking System Các tính năng nổi bật của Applicant Tracking System Applicant Tracking System (ATS) là một công cụ quan trọng giúp các công ty quản lý quy trình tuyển dụng hiệu quả hơn. Cùng chúng tôi điểm qua các tính năng nổi bật của ATS: Sàng lọc và quản lý hồ sơ ứng viên Khả năng tìm kiếm và sàng lọc ứng viên là một trong các tính năng nổi bật nhất của ATS. Với việc sử dụng từ khóa và tiêu chí cụ thể, hệ thống có thể nhanh chóng tìm kiếm và sàng lọc các hồ sơ phù hợp, tự động loại bỏ những ứng viên không đạt yêu cầu. Điều này giúp nhà tuyển dụng tập trung vào những ứng viên...

By stationd
Hiểu về trình duyệt – How browsers work

Hiểu về trình duyệt – How browsers work

Bài viết được sự cho phép của vntesters.com Khi nhìn từ bên ngoài, trình duyệt web giống như một ứng dụng hiển thị những thông tin và tài nguyên từ server lên màn hình người sử dụng, nhưng để làm được công việc hiển thị đó đòi hỏi trình duyệt phải xử lý rất nhiều thông tin và nhiều tầng phía bên dưới. Việc chúng ta (Developers, Testers) tìm hiểu càng sâu tầng bên dưới để nắm được nguyên tắc hoạt động và xử lý của trình duyệt sẽ rất hữu ích trong công việc viết code, sử dụng các tài nguyên cũng như kiểm thử ứng dụng của mình. Cách để npm packages chạy trong browser Câu hỏi phỏng vấn mẹo về React: Component hay element được render trong browser? Khi hiểu được cách thức hoạt động của trình duyệt chúng ta có thể trả lời được rất nhiều câu hỏi như: Tại sao cùng một trang web lại hiển thị khác nhau trên hai trình duyệt? Tại sao chức năng này đang chạy tốt trên trình duyệt Firefox nhưng qua trình duyệt khác lại bị lỗi? Làm sao để trang web hiển thị nội dung nhanh và tối ưu hơn một chút?… Hy vọng sau bài này sẽ giúp các bạn có một cái nhìn rõ hơn cũng như giúp ích được trong công việc hiện tại. 1. Cấu trúc của một trình duyệt Trước tiên chúng ta đi qua cấu trúc, thành phần chung và cơ bản nhất của một trình duyệt web hiện đại, nó sẽ gồm các thành phần (tầng) như sau: Thành phần nằm phía trên là những thành phần gần với tương tác của người dùng, càng phía dưới thì càng sâu và nặng về xử lý dữ liệu hơn tương tác. Nhiệm...

By stationd
Tối ưu tỉ lệ chuyển đổi với Google Optimize và Google Analytics

Tối ưu tỉ lệ chuyển đổi với Google Optimize và Google Analytics

Tối ưu tỷ lệ chuyển đổi là một trong những yếu tố quan trọng mà một Growth Marketer không thể bỏ qua. Google Analytics là công cụ hữu hiệu và phổ biến nhất giúp chúng ta theo dõi, đo lường và tối ưu tỷ lệ chuyển đổi. Số liệu từ Google Analytics giúp chúng ta nhìn ra điểm cần thay đổi để tăng tỷ lệ chuyển đổi. Theo dõi chuyển đổi là quá trình thiết yếu nhưng cũng rất “khó nhằn”. Ngày nay, mọi người đang sử dụng điện thoại di động nhiều hơn và thường xuyên hơn khi mua hàng trực tuyến. Việc tối ưu hóa website phiên bản di động rất quan trọng. Traffic đến từ mobile khá lớn và làm ảnh hưởng nhiều tới tỷ lệ chuyển đổi. Để xem website của bạn có hoạt động tốt trên mobile hay không như thế nào? Làm gì khi tỷ lệ chuyển đổi giảm? Website phiên bản di động của bạn có nội dung hấp dẫn không? Không có những nút điều hướng hành động? Trang bị lỗi …, những điều này có thể ảnh hưởng tới tỉ lệ chuyển đổi Google Analytics, hiểu được điều này, bạn sẽ có cơ sở để khắc phục và hoàn thiện website của mình. Hãy cùng đến với chủ đề “DÙNG GOOGLE ANALYTICS TỐI ƯU TỈ LỆ CHUYỂN ĐỔI TRÊN MOBILE” với sự chia sẻ của diễn giả Nguyễn Minh Đức, CEO IM GROUP tại Vietnam Mobile Day 2018 nhé

By stationd